Math, asked by divyeshdhole23, 9 months ago

Prove that:- cos(A-B/2)=(A+B/C)sinC/2

Answers

Answered by sanjeevk28012
0

Answer:

\dfrac{A+B}{C} = \dfrac{Cos \frac{(A-B)}{2} }{Sin\frac{C}{2} }   proved

Step-by-step explanation:

Given as :

To prove :- \dfrac{A+B}{C} = \dfrac{Cos \frac{(A-B)}{2} }{Sin\frac{C}{2} }

Let \dfrac{A}{Sin A}  = \dfrac{B}{Sin B} =\dfrac{C}{Sin C}  = k

So , A = k Sin A

     B = k Sin B

     C = k Sin C

From Left hand side

     \dfrac{A+B}{C}  =  \dfrac{k Sin A + k Sin B}{k SinC}

i.e              =  \dfrac{Sin A + Sin B}{Sin C}

                 = \dfrac{2 Sin(\frac{A+B}{2})  Cos (\frac{A-B}{2})  }{2Sin(\frac{C}{2})Cos (\frac{C}{2})  }

                 = \dfrac{2 Sin(90- \frac{C}{2})  Cos (\frac{A-B}{2})  }{2Sin(\frac{C}{2})Cos (\frac{C}{2})  }           ( ∵ A + B + C = 180° )

                 =   \dfrac{2Cos (\frac{C}{2})  Cos (\frac{A-B}{2})  }{2Sin(\frac{C}{2})Cos (\frac{C}{2})  }

                 =     \dfrac{Cos \frac{(A-B)}{2} }{Sin\frac{C}{2} }    Proved

So, LHS = RHS

Hence,  \dfrac{A+B}{C} = \dfrac{Cos \frac{(A-B)}{2} }{Sin\frac{C}{2} }   proved   Answer

Similar questions