Math, asked by krishna9881, 4 months ago

Prove that cos (A+B\2) = sin C, if A + B +C = 180.​

Answers

Answered by sayarkanwar032
0

Answer:

please follow me

Step-by-step explanation:

please follow me

Answered by mathdude500
1

Answer:

Correct Question:-

If A + B + C = 180°

\bf To \:  Prove :- \:cos(\dfrac{A + B}{2} ) = sin\dfrac{C}{2}

\bf\underbrace\orange{Answer:}

Identity used :-

  • cos(90° - x) = sinx

\bf\underbrace\orange{Solution:}

\bf \:A + B + C = 180°

\bf\implies \:A + B = 180° - C

\bf \:Consider \: cos(\dfrac{A + B}{2} )

Put the value of A + B, we get

\bf\implies \:cos(\dfrac{180 - C}{2} )

\bf\implies \:cos(\dfrac{180}{2}  - \dfrac{C}{2} )

\bf\implies \:cos(90 - \dfrac{C}{2} )

\bf\implies \:sin\dfrac{C}{2}

\bf \:Hence \:  proved

___________________________________________

Additional Information:-

Relation between sides & T - Ratios

  • sin θ = Opposite Side/Hypotenuse
  • cos θ = Adjacent Side/Hypotenuse
  • tan θ = Opposite Side/Adjacent Side
  • sec θ = Hypotenuse/Adjacent Side
  • cosec θ = Hypotenuse/Opposite Side
  • cot θ = Adjacent Side/Opposite Side

◇ Reciprocal Identities

  • cosec θ = 1/sin θ
  • sec θ = 1/cos θ
  • cot θ = 1/tan θ
  • sin θ = 1/cosec θ
  • cos θ = 1/sec θ
  • tan θ = 1/cot θ

◇ Co-function Identities

  • sin (90°−x) = cos x
  • cos (90°−x) = sin x
  • tan (90°−x) = cot x
  • cot (90°−x) = tan x
  • sec (90°−x) = cosec x
  • cosec (90°−x) = sec x

◇ Fundamental Trigonometric Identities

  • sin²θ + cos²θ = 1
  • sec²θ - tan²θ = 1
  • cosec²θ - cot²θ = 1
Similar questions