Math, asked by vyshu5610, 11 months ago

prove that Cos A by 1 minus tan A + sin a by 1 minus cot a =
Sin A + Cos A​

Answers

Answered by debsruti
1

Step-by-step explanation:

HOPE THIS WILL HELP YOU

MARK THIS AS BRAINLIEST

THANKS

Attachments:
Answered by XEVILX
9

Hey Pretty Stranger!

 \sf \: LHS =  \dfrac{ \cos \: A }{1 -  \tan \: A }   +  \dfrac{ \sin \:A  }{1 -  \cot \: A}

 \sf  \hookrightarrow \:  \dfrac{ \cos \:A }{1 - ( \frac{ \sin \: A }{ \cos \:A } )}  + \dfrac{  \sin \:A }{1 - ( \frac{ \cos \: A }{ \sin \:A } )}

 \sf  \hookrightarrow \:   \dfrac{ { \cos}^{2} A}{ \cos \: A \:  -  \sin \: A}  + \dfrac{ { \sin}^{2} A}{ \cos \: A \:  -  \sin \: A}

 \sf  \hookrightarrow \:   \dfrac{ { \cos}^{2} A}{ \cos \: A \:  -  \sin \: A}   -  \dfrac{ { \sin}^{2} A}{ \cos \: A \:  -  \sin \: A}

 \sf  \hookrightarrow \:   \dfrac{ { \cos}^{2} A -  { \sin}^{2}A }{ \cos \: A -  \sin \: A}

 \sf  \hookrightarrow \:   \dfrac{ (\cos \: A -  \sin \: A) ( \cos \:A +  \sin \: A    }{ (\cos \: A -  \sin \: A) }

 \sf  \hookrightarrow \:  (\cos \: A +  \sin \: A)

 \sf  \hookrightarrow \:  (  \sin \: A + \cos \: A \: )

Hence,Proved!

Similar questions