Prove that cos a minus sin a ×sec A minus Cos A × tan A + cot a = 1
Answers
Answered by
1
Step-by-step explanation:
LHS =(tanA+cotA)(cosecA-SinA)(secA-CosA)
tanA+cotA=(SinA/CosA)+(CosA/SinA)
= (sin²Α+cos²Α)/cosAsinA
= 1/cosAsinA
CosecA-SinA=(1/SinA)-SinA
= (1-sin²Α)/SinA= cos²Α/sinA
SecA-cosA=(1/cosA)-cosA=(1-cos²Α)/cos A
=sin²Α/cosA
(tanA+cotA)(cosecA-SinA)(secA-cosA)
=(1/sinAcosA)(cos²Α/SinA)(sin²Α/CosA)
=1=RHS
If you like it please mark it as brainliest and start following me at Gami Gargi for more help and thank this answer.
Thank you
Similar questions