Prove that
cos A - sin A + 1 / cos A + sin A - 1 = cosec A + cot A
Answers
Answered by
1
Answer:
Step-by-step explanation:
cosA-sinA+1/cosA+sinA-1
=(cosA-sinA+1)(cosA+sinA+1)/(cosA+sinA-1)(cosA+sinA+1)
=(cos²A-cosAsinA+cosA+cosAsinA-sin²A+sinA+cosA-sinA+1)/{(cosA+sinA)²-(1)²}
=(cos²A-sin²A+2cosA+1)/(cos²A+2cosAsinA+sin²A-1)
={cos²A+2cosA+(1-sin²A)}/(1+2cosAsinA-1) [∵, sin²A+cos²A=1]
=(cos²A+2cosA+cos²A)/2cosAsinA
=(2cos²A+2cosA)/2cosAsinA
=2cosA(cosA+1)/2cosAsinA
=(cosA+1)/sinA
=cosA/sinA+1/sinA
=cotA+cosecA
=cosecA+cotA (Proved)
Similar questions
Math,
5 months ago
English,
5 months ago
Geography,
10 months ago
Math,
1 year ago
Social Sciences,
1 year ago