Math, asked by Ashishatri, 10 months ago

Prove that cos A – sin A + 1 / cos A + sin A – 1 = cosec A + cot A using the identity cosec² A = 1 + cot² A. Please answer quickley

Answers

Answered by angeleenashaji
2

Answer:

Hope this helps and sorry for the bad handwriting I was in a hurry

Your Welcome

Attachments:
Answered by jtg07
6

Step-by-step explanation:

\green{question::}

{prove\:that\::}

 \frac{ \cos(a)  -  \sin(a)  + 1}{ \cos(a) +  \sin(a)   - 1}  =  \csc(a) +  \cot(a)

since \: we \: need \: the \: answer \: in \:  \\ cosec \: and \: cot \: we \: will \: divide \: it \\ by \: sin

thus \: we \: have

 \frac{  \frac{ \cos(a) }{ \sin(a) }    -  \frac{ \sin(a) }{ \sin(a) }  +  \frac{1}{sin(a)}  }{ \frac{ \cos(a) }{ \sin(a) } +  \frac{ \sin(a) }{ \sin(a) }   -  \frac{1}{ \sin(a) } }

 \frac{ \cot(a) - 1 +  \csc(a)  }{ \cot(a) + 1 -  \csc(a)  }

we \: can \: replace \: 1 \: as \:  {  \csc(a) }^{2} -     {   \cot(a) }^{2}

 \frac{ \cot(a) +  \csc(a) - ( {\csc }^{2}a -  { \cot(a) }^{2}  )   }{ \cot(a) + 1 -  \csc(a)  }

taking common, we have

 \frac{ ( \cot(a)  +  \csc(a) )(1 -  \csc(a) +  \cot(a)}{ 1  - \csc(a) +  \cot(a)   }

 \csc(a)  +  \cot(a)

\red{hence\:proved}

Similar questions