prove that cos secant theta minus sin theta into secant theta minus cos theta equal to one by tan theta + cot theta
Answers
Answered by
5
Step-by-step explanation:
To prove,
(cosec θ - sin θ)(sec θ - cos θ)(tan θ + cot θ)=1
Proof:
LHS =(1/sin θ - sin θ)(1/cos θ - cos θ)(tan θ+1/tan θ)
=(1-sin²θ)/sinθ (1-cos²θ)/cosθ(1+tan²θ)/tanθ
=(cos²θ)/sinθ (sin²θ)/cosθ sec²θ/tanθ
=cos θ sin θ (1/cos²θ)/(sinθ/cosθ)
=cos θ sin θ(1/cos²θ)(cosθ/sinθ)
=cos θ sin θ (cos θ/sin θ cos²θ)
=cos θ sin θ (1/sin θ cos θ)
=cos θ sin θ/sin θ cos θ
=1=RHS
∴ Hence proved
kanjnanhi9431:
Plz mark it as brainliest
Similar questions