Prove that → cosθ + sinθ = √2cosθ.
#Mathematics
#Trigonometry
Answers
Answered by
8
Hello !
______________________________________________________
Your statement seems incomplete :
It should be like this :
If cosФ - sinФ = √2 sinФ . Prove that :
cosФ + sinФ = √2 cosФ.
______________________________________________________
Solution :
here, cosФ - sinФ = √2 sinФ ____________(1)
sinФ + √2 sinФ = cosФ
sinФ(1+√2) = cosФ
sinФ = cosФ x 1/(1+√2)
sinФ = cosФ x 1/(1+√2) x √2-1/√2-1
sinФ = cosФ x (√2-1) /(2-1)
sinФ = (√2-1)cosФ
sinФ = √2 cosФ - cosФ
sinФ + cosФ = √2 cosФ
___________________________________________________________
______________________________________________________
Your statement seems incomplete :
It should be like this :
If cosФ - sinФ = √2 sinФ . Prove that :
cosФ + sinФ = √2 cosФ.
______________________________________________________
Solution :
here, cosФ - sinФ = √2 sinФ ____________(1)
sinФ + √2 sinФ = cosФ
sinФ(1+√2) = cosФ
sinФ = cosФ x 1/(1+√2)
sinФ = cosФ x 1/(1+√2) x √2-1/√2-1
sinФ = cosФ x (√2-1) /(2-1)
sinФ = (√2-1)cosФ
sinФ = √2 cosФ - cosФ
sinФ + cosФ = √2 cosФ
___________________________________________________________
Answered by
0
Step-by-step explanation:
Hello !
______________________________________________________
Your statement seems incomplete :
It should be like this :
If cosФ - sinФ = √2 sinФ . Prove that :
cosФ + sinФ = √2 cosФ.
______________________________________________________
Solution :
here, cosФ - sinФ = √2 sinФ ____________(1)
sinФ + √2 sinФ = cosФ
sinФ(1+√2) = cosФ
sinФ = cosФ x 1/(1+√2)
sinФ = cosФ x 1/(1+√2) x √2-1/√2-1
sinФ = cosФ x (√2-1) /(2-1)
sinФ = (√2-1)cosФ
sinФ = √2 cosФ - cosФ
sinФ + cosФ = √2 cosФ
___________________________________________________________
Similar questions
Hindi,
8 months ago
Social Sciences,
8 months ago
History,
1 year ago
Biology,
1 year ago
Social Sciences,
1 year ago
Science,
1 year ago