Prove that cos square A/1- tan A + sin cube A / sin A- cos A= 1+ sin Acos A
Answers
Answered by
4
cos²A/1-tanA+sin³A/sinA-cosA
=cos²A/(1-sinA/cosA)+sin³A/sinA-cosA
=cos³A/(cosA-sinA)+sin³A/{-(cosA-sinA)}
=cos³A/(cosA-sinA)-sin³A/(cosA-sinA)
=(cos³A-sin³A)/(cosA-sinA)
=[(cosA-sinA)³+3cosAsinA(cosA-sinA)]/(cosA-sinA)
=[(cosA-sinA){(cosA-sinA)²+3cosAsinA}]/(cosA-sinA)
=(cos²A-2cosAsinA+sin²A+3sinAcosA)
=(sin²A+cos²A+cosAsinA)
=1+sinAcosA (Proved)
=cos²A/(1-sinA/cosA)+sin³A/sinA-cosA
=cos³A/(cosA-sinA)+sin³A/{-(cosA-sinA)}
=cos³A/(cosA-sinA)-sin³A/(cosA-sinA)
=(cos³A-sin³A)/(cosA-sinA)
=[(cosA-sinA)³+3cosAsinA(cosA-sinA)]/(cosA-sinA)
=[(cosA-sinA){(cosA-sinA)²+3cosAsinA}]/(cosA-sinA)
=(cos²A-2cosAsinA+sin²A+3sinAcosA)
=(sin²A+cos²A+cosAsinA)
=1+sinAcosA (Proved)
Similar questions