Math, asked by sahil140133p, 1 year ago

prove that cos square A minus 1 cos square A + 1 equal to -1​

Answers

Answered by brainlyuser1218
3

Answer:

 { \cos}^{2} a - 1 { \cos }^{2} a + 1 =  - 1 \\  \frac{1}{ { \sin}^{2}a  }  - 1 \times  \frac{1}{? \ { \cos}^{2}a  }  +  \frac{1}{1}  \\  \frac{1 -  \ \ { \sin}^{2}a }{\ { \sin }^{2}a }   \times  \frac{1 +  { \cos }^{2}a }{? { \cos }^{2} a}  =  - 1 \\  \frac{  { \ - cos}^{2} a }{ {  \sin(?)  }^{2} a}  \times \frac{ { \ \sin  }^{2} a}{ { \cos }^{2} a}  =  - 1 \\  =  - 1 =  - 1

hence proved

Answered by Anonymous
1

As we know tan A=Sin A/Cos A and tan B=Sin B/Cos B  So

tan squareA - tan squareB= (Sin A/Cos A)^2 - (Sin B/Cos B)^2 =

{(Sin^2 A Cos^2 B)-(Cos^2 A Sin^2 B)}/(Cos^2 A .Cos^2 B)

As we know that Sin^2 A=1-Cos^2 A and Sin^2 B=1-Cos^2 B ,So

tan squareA - tan squareB={( Cos^2 B(1-cos^2 A))-(Cos^2 A (1-Cos^2 B))}/(Cos^2 A .Cos^2 B)= (Cos^2 B- Cos^2 A)/(Cos^2 A .Cos^2 B)

Read more on Brainly.in - https://brainly.in/question/732956#readmore

Similar questions