Math, asked by honey7315, 1 year ago

prove that cos theta /1-sin theta + 1-sin theta/ cos theta = 2 sec theta​

Answers

Answered by Thanusri
97

LHS = cos theta / 1-sin theta + 1-sin theta / cos theta

= cos theta * cos theta + 1-sin theta * 1-sin theta / cos theta * 1-sin theta

= cos sq theta + 1+ sin sq theta -2sin theta / cos theta * 1-sin theta

= 2 -2sin theta / cos theta * 1-sin theta

=2(1-sin theta )/ cos theta * 1-sin theta

=2/cos theta

= 2 * 1/cos theta

=2 sec theta

= RHS

Hence proved


honey7315: thanks
Answered by smithasijotsl
8

Answer:

\frac{cos \ \theta}{1-sin \theta} +\frac{1-sin\theta}{cos\theta}   = 2 sec \theta is proved

Step-by-step explanation:

To prove,

\frac{cos \ \theta}{1-sin \theta} +\frac{1-sin\theta}{cos\theta}   = 2 sec \theta

Solution:

Recall the concepts:

(a-b)² = a²-2ab+b²

sin²θ + cos²θ = 1

sec \theta = \frac{1}{cos\theta}

\frac{cos \ \theta}{1-sin \theta} +\frac{1-sin\theta}{cos\theta}

Taking LCM as (1-sinθ)cosθ we get

\frac{cos \ \theta}{1-sin \theta} +\frac{1-sin\theta}{cos\theta} =  \frac{cos^2 \theta + (1-sin\ \theta)^2}{(1-sin \theta)cos\theta} \\

Applying the identity (a-b)² = a²-2ab+b² we get

\frac{cos^2 \theta + (1-sin\ \theta)^2}{(1-sin \theta)cos\theta} \\= \frac{cos^2 \theta + 1+sin^2\ \theta-2sin\theta}{(1-sin \theta)cos\theta} \\

applying the identity sin²θ + cos²θ = 1 we get

= \frac{1+ 1-2sin\theta}{(1-sin \theta)cos\theta} \\

= \frac{2-2sin\theta}{(1-sin \theta)cos\theta} \\

= \frac{2(1-sin\theta)}{(1-sin \theta)cos\theta} \\

= \frac{2}{cos \theta}

= 2 sec θ( ∵ sec \theta = \frac{1}{cos\theta})

\frac{cos \ \theta}{1-sin \theta} +\frac{1-sin\theta}{cos\theta}   = 2 sec \theta

Hence proved

#SPJ3

Similar questions