Prove that:
cos theta/1- tan theta+ Sin theta/ 1-cot theta
Answers
Answer:
Let I
n
=∫
(secx+tanx)
n
sec
2
x
dx (for n>1)
∴I
n
=∫
(
1+tan
2
x
+tanx)
n
sec
2
x
dx (as sec
2
θ=1+tan
2
θ)
Now, let t=tanx⇒dt=sec
2
xdx, we then have
I
n
=∫
(
1+t
2
+t)
n
1
dt
Making a hyperbolic substitution t=sinhy⟹dt=coshydy , we have
I
n
=∫
(
1+sinh
2
y
+sinhy)
n
coshy
dy
Now, as sinhy=
2
e
y
−e
−y
and 1+sinh
2
y=cosh
2
y, we get
I
n
=
2
1
∫
e
ny
e
y
+e
−y
dy
∴I
n
=
2
1
∫[e
−(n−1)y
+e
−(n+1)y
]dy
∴I
n
=−
2(n−1)
e
−(n−1)y
−
2(n+1)
e
−(n+1)y
+C
Now, re-substitute coshy−sinhy=e
−y
and sinhy=tanx, coshy=secx, we have
I
n
=−
2(n−1)
(secx−tanx)
(n−1)
−
2(n+1)
(secx−tanx)
(n+1)
+C
Applying the limits, we get
I
n
=[−
2(n−1)
(secx−tanx)
(n−1)
−
2(n+1)
(secx−tanx)
(n+1)
]
0
π/2
∴I
n
=
n
2
−1
n
(Note that lim
x→∞
secx−tanx=0)
Hence, proved