Prove that cos theta - sin theta + 1/ cos theta + sin theat - 1 = cosec theta + cot theta
Answers
Answered by
6
cosθ - sinθ - 1 / cosθ + sinθ - 1
dividing both numerator and denominator by sinθ
cotθ - 1 + cosecθ / cotθ + 1 -cosecθ
= cotθ - (cosec²θ - cot²θ) + cosecθ / cotθ + 1 - cosecθ
= cotθ + cosecθ - (cosecθ - cotθ)(cosecθ + cotθ) / cotθ - cosecθ + 1)
= (cosecθ + cotθ)( 1 - cosecθ + cotθ) / (1 - cosecθ + cotθ) = cosecθ + cotθ
hence proved
dividing both numerator and denominator by sinθ
cotθ - 1 + cosecθ / cotθ + 1 -cosecθ
= cotθ - (cosec²θ - cot²θ) + cosecθ / cotθ + 1 - cosecθ
= cotθ + cosecθ - (cosecθ - cotθ)(cosecθ + cotθ) / cotθ - cosecθ + 1)
= (cosecθ + cotθ)( 1 - cosecθ + cotθ) / (1 - cosecθ + cotθ) = cosecθ + cotθ
hence proved
Similar questions
Computer Science,
7 months ago
Math,
7 months ago
Business Studies,
7 months ago
Math,
1 year ago
English,
1 year ago
Social Sciences,
1 year ago
History,
1 year ago
History,
1 year ago