Math, asked by Anonymous, 1 year ago

Prove that:-

Cos x Cos 2x cos 4x cos 8x=
Sin 16x/16 Sin x

❌❌❌No spam❌❌❌

Answers

Answered by Anonymous
17

SOLUTION

Refer to the attachment

hope it helps ✔️

Attachments:
Answered by Anonymous
12

Answer:

L.H.S. = R.H.S.

Step-by-step explanation:

Given :

\large \text{$cos \ x \ cos \ 2 x \ cos \ 4 x \ cos 8 x = \dfrac{sin \ 16x}{16sin \x} $}

\large \text{$L.H.S.=cos \ x \ cos \ 2 x \ cos \ 4 x \ cos 8 x $}\\\\\\\large \text{$L.H.S.=\dfrac{1}{2}(2sin \ x \ cos \ x \ cos \ 2 x) \ cos \ 4 x \ cos 8 x $ }\\\\\\\large \text{Multiply and divide by $2sin \ x$}\\\\\\\large \text{$L.H.S.=\dfrac{2sin \ 2x \ cos \ 2 x \ cos \ 4 x \ cos 8 x }{4sin \ x} $}\\\\\\\large \text{$L.H.S.=\dfrac{2sin \ 4x \ cos \ 4 x \ cos 8 x }{8sin \ x} $}

\large \text{$L.H.S.=\dfrac{2sin \ 8x \ cos \ 8 x}{16sin \ x} $}\\\\\\\large \text{$L.H.S.=\dfrac{sin \ 16x}{16sin \ x} $}

L.H.S. = R.H.S.

Hence proved.

Thus we get answer.

Similar questions