Math, asked by skrai3977, 9 months ago

Prove that cos0/1+sin0+ 1+sin0/cos0=3sec0

Answers

Answered by MANTUMEHER
0

Step-by-step explanation:

 \frac{ \cos( \alpha ) }{1 +  \sin( \alpha ) }  +  \frac{1 +  \sin( \alpha ) }{ \cos( \alpha ) }  \\  =  \frac{ { \cos( \alpha ) }^{2}  +  {(1 +  \sin( \alpha ) )}^{2} }{(1 +  \sin( \alpha ) ) \cos( \alpha ) }  \\  =  \frac{  { \cos( \alpha ) }^{2} + 1 +  { \sin( \alpha ) }^{2}  + 2 \sin( \alpha )  }{(1 +  \sin( \alpha ) ) \cos( \alpha ) }  \\  =   \frac{  { \sin( \alpha ) }^{2} +  { \cos( \alpha ) }^{2}  + 1 + 2 \sin( \alpha )  }{(1 +  \sin( \alpha ) ) \cos( \alpha ) }  \\  =  \frac{2 + 2 \sin( \alpha ) }{(1 +  \sin( \alpha ) ) \cos( \alpha ) }  \\  =  \frac{2(1 +  \sin( \alpha ) )}{(1 +  \sin( \alpha ))   \cos( \alpha ) }  \\  =  \frac{2}{ \cos( \alpha ) }  \\  = 2 \sec( \alpha )

Similar questions