Math, asked by musebmuseb9093pd8dyg, 1 year ago

prove that cos11+sin11/cos11-sin11=tan56 or cot 34

Attachments:

Answers

Answered by anmol3421
307
hope so this helps...if any further doubts you may reply
Attachments:

musebmuseb9093pd8dyg: Thank you for your answer Anmol3421
anmol3421: your welcome
Answered by presentmoment
116

\bold{\frac{\cos 11+\sin 11}{\cos 11-\sin 11}=\tan 56 \text { or } \cot 34}

Given:

\frac{\cos 11+\sin 11}{\cos 11-\sin 11}=\tan 56 \text { or } \cot 34

To Prove:

\frac{\cos 11+\sin 11}{\cos 11-\sin 11}=\tan 56 \text { or } \cot 34

Solution:

RHS

\frac{\cos 11+\sin 11}{\cos 11-\sin 11}

Divide numerator and denominator by cos⁡11

Hence the equation becomes

\frac{1+\tan 11}{1-\tan 11} \ldots(1)

By formula,

\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}

Bringing eq(1) in the above form,

\frac{1+\tan 11}{1-\tan 11}=\frac{\tan 45+\tan 11}{1-(\tan 45)(\tan 11)}

\frac{\tan 45+\tan 11}{1-(\tan 45)(\tan 11)}=\tan (45+11)=\tan (56)

\begin{array}{l}{\tan 56=\tan (90-34)} \\ {\tan (90-\mathrm{A})=\cot \mathrm{A}}\end{array}

Hence \tan (90-34)=\cot 34= RHS  

\bold{\frac{\cos 11+\sin 11}{\cos 11-\sin 11}=\tan 56 \text { or } \cot 34}

LHS = RHS  

Hence proved.

Similar questions