prove that cos20 cos 40 cos 60 cos 80=1/16.
Answers
Answered by
8
Hey mate!!!
since cos 60 = 1/2
LHS=1/2 cos20cos40cos80
multiplying and dividing by 2,
=>1/4 cos80(2cos40cos20)
=1/4 cos80(cos(40+20) + cos(40-20))
= 1/4 cos80(cos60+cos20)
=1/4 cos80(1/2 + cos20)
opening the bracket:
=> 1/8 cos80 + 1/4 cos80cos20
multiplying and dividing [1/4 cos80cos20] by 2,
=> 1/8 cos80 + 1/8 (2cos80cos20)
=1/8 cos80 + 1/8 (cos100 + cos60)
=1/8 cos80 + 1/8 (cos100 + 1/2)
=1/8 cos80 + 1/8 cos100 + 1/16
since cos100 = cos (180-80) = -cos80,
=> 1/8 cos80 + 1/8 (-cos80) +1/16
= 1/8 cos80 - 1/8 cos80 + 1/16
= 1/16 = RHS
HOPE IT HELPS.
since cos 60 = 1/2
LHS=1/2 cos20cos40cos80
multiplying and dividing by 2,
=>1/4 cos80(2cos40cos20)
=1/4 cos80(cos(40+20) + cos(40-20))
= 1/4 cos80(cos60+cos20)
=1/4 cos80(1/2 + cos20)
opening the bracket:
=> 1/8 cos80 + 1/4 cos80cos20
multiplying and dividing [1/4 cos80cos20] by 2,
=> 1/8 cos80 + 1/8 (2cos80cos20)
=1/8 cos80 + 1/8 (cos100 + cos60)
=1/8 cos80 + 1/8 (cos100 + 1/2)
=1/8 cos80 + 1/8 cos100 + 1/16
since cos100 = cos (180-80) = -cos80,
=> 1/8 cos80 + 1/8 (-cos80) +1/16
= 1/8 cos80 - 1/8 cos80 + 1/16
= 1/16 = RHS
HOPE IT HELPS.
Answered by
7
hello mate
here is your answer
question--prove that cos20 cos 40 cos 60 cos 80=1/16.
solution--
since cos 60 = 1/2
LHS=1/2 cos20cos40cos80
multiplying and dividing by 2,
=>1/4 cos80(2cos40cos20)
=1/4 cos80(cos(40+20) + cos(40-20))
= 1/4 cos80(cos60+cos20)
=1/4 cos80(1/2 + cos20)
=> 1/8 cos80 + 1/4 cos80cos20
multiplying and dividing [1/4 cos80cos20] by 2,
=> 1/8 cos80 + 1/8 (2cos80cos20)
=1/8 cos80 + 1/8 (cos100 + cos60)
=1/8 cos80 + 1/8 (cos100 + 1/2)
=1/8 cos80 + 1/8 cos100 + 1/16
since cos100 = cos (180-80) = -cos80,
=> 1/8 cos80 + 1/8 (-cos80) +1/16
= 1/8 cos80 - 1/8 cos80 + 1/16
= 1/16 = RHS
I hope helps you
here is your answer
question--prove that cos20 cos 40 cos 60 cos 80=1/16.
solution--
since cos 60 = 1/2
LHS=1/2 cos20cos40cos80
multiplying and dividing by 2,
=>1/4 cos80(2cos40cos20)
=1/4 cos80(cos(40+20) + cos(40-20))
= 1/4 cos80(cos60+cos20)
=1/4 cos80(1/2 + cos20)
=> 1/8 cos80 + 1/4 cos80cos20
multiplying and dividing [1/4 cos80cos20] by 2,
=> 1/8 cos80 + 1/8 (2cos80cos20)
=1/8 cos80 + 1/8 (cos100 + cos60)
=1/8 cos80 + 1/8 (cos100 + 1/2)
=1/8 cos80 + 1/8 cos100 + 1/16
since cos100 = cos (180-80) = -cos80,
=> 1/8 cos80 + 1/8 (-cos80) +1/16
= 1/8 cos80 - 1/8 cos80 + 1/16
= 1/16 = RHS
I hope helps you
Similar questions