prove that cos20°.cos40°.cos60°.cos80°=1÷16
Answers
Answered by
30
since cos 60 = 1/2
LHS=1/2 cos20cos40cos80
multiplying and dividing by 2,
=>1/4 cos80(2cos40cos20)
=1/4 cos80(cos(40+20) + cos(40-20))
= 1/4 cos80(cos60+cos20)
=1/4 cos80(1/2 + cos20)
opening the bracket:
=> 1/8 cos80 + 1/4 cos80cos20
multiplying and dividing [1/4 cos80cos20] by 2,
=> 1/8 cos80 + 1/8 (2cos80cos20)
=1/8 cos80 + 1/8 (cos100 + cos60)
=1/8 cos80 + 1/8 (cos100 + 1/2
=1/8 cos80 + 1/8 cos100 + 1/16
since cos100 = cos (180-80) = -cos80,
=> 1/8 cos80 + 1/8 (-cos80) +1/16
= 1/8 cos80 - 1/8 cos80 + 1/16
= 1/16 = RHS
LHS=1/2 cos20cos40cos80
multiplying and dividing by 2,
=>1/4 cos80(2cos40cos20)
=1/4 cos80(cos(40+20) + cos(40-20))
= 1/4 cos80(cos60+cos20)
=1/4 cos80(1/2 + cos20)
opening the bracket:
=> 1/8 cos80 + 1/4 cos80cos20
multiplying and dividing [1/4 cos80cos20] by 2,
=> 1/8 cos80 + 1/8 (2cos80cos20)
=1/8 cos80 + 1/8 (cos100 + cos60)
=1/8 cos80 + 1/8 (cos100 + 1/2
=1/8 cos80 + 1/8 cos100 + 1/16
since cos100 = cos (180-80) = -cos80,
=> 1/8 cos80 + 1/8 (-cos80) +1/16
= 1/8 cos80 - 1/8 cos80 + 1/16
= 1/16 = RHS
vinay1996:
it is long method
Answered by
9
cos 20 × cos 40 × cos 60 × cos 80 = 1/16
L.H.S.
cos 30 ×cos 40 × 1/2× cos 80
multiply nd divide by 2
1/4 (2 cos20 cos40 cos80)
1/4 (cos(20+80)+ cos(20-80)) cos40 (2cosa cosb= cos(a+b) + cos(a-b))
1/4 (cos(-60)+ cos(100)) cos40
1/4(1/2 + cos100)cos40
1/8 cos40+ 1/4 (cos40 cos100)
multiplt nd divide by 2
2/2(1/8 cos40) + 1/8(2 cos40 cos100)
1/8 cos40+ 1/8 (cos140+ cos(-60)) (2cosa cosb= cos(a+b) cos(a-b))
1/8 cos40+ 1/8 cos140 + 1/16 (cos60= 1/2)
1/8(cos40+cos140) + 1/16
1/8(2 cos90 cos(-50)) + 1/16 (as above identity)
cos90= 0
1/16
hence R.H.S.
proved.
L.H.S.
cos 30 ×cos 40 × 1/2× cos 80
multiply nd divide by 2
1/4 (2 cos20 cos40 cos80)
1/4 (cos(20+80)+ cos(20-80)) cos40 (2cosa cosb= cos(a+b) + cos(a-b))
1/4 (cos(-60)+ cos(100)) cos40
1/4(1/2 + cos100)cos40
1/8 cos40+ 1/4 (cos40 cos100)
multiplt nd divide by 2
2/2(1/8 cos40) + 1/8(2 cos40 cos100)
1/8 cos40+ 1/8 (cos140+ cos(-60)) (2cosa cosb= cos(a+b) cos(a-b))
1/8 cos40+ 1/8 cos140 + 1/16 (cos60= 1/2)
1/8(cos40+cos140) + 1/16
1/8(2 cos90 cos(-50)) + 1/16 (as above identity)
cos90= 0
1/16
hence R.H.S.
proved.
Similar questions