Prove that cos2a cos a/2 -cos3a cos9a/2=sin5a Sin 5a/2
Answers
Answer:
Step-by-step explanation:
Formula used:
Now,
Multiply and divide by 2, we get
(by using formula (1))
(by using formula (2))
(by using formula (3))
Answer:
cos2Acos
2
A
−cos3Acos
2
9A
Multiply and divide by 2, we get
=\frac{1}{2}[2\:cos2A\:cos\frac{A}{2}-2\:cos3A\:cos\frac{9A}{2}]=
2
1
[2cos2Acos
2
A
−2cos3Acos
2
9A
]
=\frac{1}{2}[cos(2A+\frac{A}{2})+cos(2A-\frac{A}{2})-(cos(3A+\frac{9A}{2})+cos(3A-\frac{9A}{2}))]=
2
1
[cos(2A+
2
A
)+cos(2A−
2
A
)−(cos(3A+
2
9A
)+cos(3A−
2
9A
))]
(by using formula (1))
=\frac{1}{2}[cos\frac{5A}{2}+cos\frac{3A}{2}-cos\frac{15A}{2}-cos\frac{-3A}{2}]=
2
1
[cos
2
5A
+cos
2
3A
−cos
2
15A
−cos
2
−3A
]
=\frac{1}{2}[cos\frac{5A}{2}+cos\frac{3A}{2}-cos\frac{15A}{2}-cos\frac{3A}{2}]=
2
1
[cos
2
5A
+cos
2
3A
−cos
2
15A
−cos
2
3A
]
=\frac{1}{2}[cos\frac{5A}{2}-cos\frac{15A}{2}]=
2
1
[cos
2
5A
−cos
2
15A
]
=\frac{1}{2}[-2\:sin(\frac{\frac{5A}{2}+\frac{15A}{2}}{2})\:sin(\frac{\frac{5A}{2}-\frac{15A}{2}}{2})]=
2
1
[−2sin(
2
2
5A
+
2
15A
)sin(
2
2
5A
−
2
15A
)] (by using formula (2))
=\frac{1}{2}[-2\:sin(\frac{\frac{20A}{2}}{2})\:sin(\frac{\frac{-10A}{2}}{2})]=
2
1
[−2sin(
2
2
20A
)sin(
2
2
−10A
)]
=\frac{1}{2}[-2\:sin(\frac{10A}{2})\:sin(\frac{-5A}{2})]=
2
1
[−2sin(
2
10A
)sin(
2
−5A
)] (by using formula (3))
=\frac{1}{2}[2\:sin5A\:sin\frac{5A}{2}]=
2
1
[2sin5Asin
2
5A
]
=sin5A\:sin\frac{5A}{2}=sin5Asin
2
5A
Step-by-step explanation:
...