Math, asked by rajnijagadhri20, 11 months ago

prove that - cos2a + tan2a-1/sin2a=tan2a​

Answers

Answered by ashishks1912
32

The equality \frac{cos^2a+tan^2a-1}{sin^2a}=tan^2a is proved

Step-by-step explanation:

Given that \frac{cos^2a+tan^2a-1}{sin^2a}=tan^2a

To prove the given equality :

Taking LHS

\frac{cos^2a+tan^2a-1}{sin^2a}

=\frac{cos^2a+tan^2a-(cos^2a+sin^2a)}{sin^2a} ( by using the identity cos^2x+sin^2x=1 here x=a )

=\frac{cos^2a+tan^2a-cos^2a-sin^2a}{sin^2a}

=\frac{tan^2a-sin^2a}{sin^2a}

=\frac{tan^2a}{sin^2a}-\frac{sin^2a}{sin^2a}

=\frac{tan^2a}{sin^2a}-1

=\frac{\frac{sin^2a}{cos^2a}}{sin^2a}-1 ( we know tanx=\frac{sinx}{cosx} )

=(\frac{sin^2a}{cos^2a}\times \frac{1}{sin^2a})-1

=\frac{1}{cos^2a}-1

=sec^2a-1 ( by using secx=\frac{1}{cosx} )

=tan^2a=RHS ( by using the identity sec^2x-tan^2x=1 )

Therefore LHS=RHS

The equality \frac{cos^2a+tan^2a-1}{sin^2a}=tan^2a is proved

Similar questions