Math, asked by GuptaTilak, 1 year ago

Prove that cos2xcos2y+sin^2(x-y)-sin^2(x+y)= cos(2x+2y)

Answers

Answered by Anonymous
57

Answer:

To prove: cos 2θ cos2φ + sin^2 (θ – φ) – sin^2(θ + φ) = cos (2θ + 2φ)

Proof:

LHS = cos 2θ cos2φ + sin2 (θ – φ) – sin2(θ + φ)

= cos 2θ cos2φ + sin (θ – φ + θ + φ) sin(θ – φ - θ - φ) [Using: sin2 A - sin2 B = sin(A + B) sin (A - B)]

= cos 2θ cos2φ + sin 2θ sin(-2φ)

= cos 2θ cos2φ - sin 2θ sin 2φ

= cos (2θ + 2φ) [using: cos (A + B) = cos A cos B - sin A sin B]

= RHS [Hence Proved]

Hope it will help you.

Answered by vinod04jangid
2

Answer:The step by step explanation is given below

Step-by-step explanation:

Given: cos2xcos2y+sin^2(x-y)-sin^2(x+y)= cos(2x+2y)

To prove:We have to prove

             cos2xcos2y+sin^2(x-y)-sin^2(x+y)= cos(2x+2y)

Explanation:

Step 1: LHS =  cos2xcos2y+sin^2(x-y)-sin^2(x+y)

                    = cos2xcos2y+[sin(x-y)]^{2}-[sin(x+y)]^{2}

                  = cos2xcos2y+(sinx.cosy-siny.cosx)^{2}-(sinx.cosy+siny.cosx)^{2}

=cos2xcos3y+(sixcosy)^{2}+(sinycosx)^{2}-2sinxcosxsinycosy-(sinxcosy)^{2}-(sinycosx)^{2}-2sinxsinycosxcosy

= cos2xcos2y-4sinxsinycosxcosy

=cos2xcos2y-(2sinxcox)(2cosysiny)

=cos2xcos2y-sin2ysin2x

=cos(2x+2y)

=RHS

#SPJ2

Cos 2x cos 2y + cos^2 (x+y) - cos^2 (x-y) = cos(2x+2y)

https://brainly.in/question/8775327

Prove that :- sin 2x - sin 2y/cos 2y - cos 2x = cot (x+y)

https://brainly.in/question/1018715

                   

Similar questions