Prove that cos2xcos2y+sin^2(x-y)-sin^2(x+y)= cos(2x+2y)
Answers
Answer:
To prove: cos 2θ cos2φ + sin^2 (θ – φ) – sin^2(θ + φ) = cos (2θ + 2φ)
Proof:
LHS = cos 2θ cos2φ + sin2 (θ – φ) – sin2(θ + φ)
= cos 2θ cos2φ + sin (θ – φ + θ + φ) sin(θ – φ - θ - φ) [Using: sin2 A - sin2 B = sin(A + B) sin (A - B)]
= cos 2θ cos2φ + sin 2θ sin(-2φ)
= cos 2θ cos2φ - sin 2θ sin 2φ
= cos (2θ + 2φ) [using: cos (A + B) = cos A cos B - sin A sin B]
= RHS [Hence Proved]
✨Hope it will help you.✨
Answer:The step by step explanation is given below
Step-by-step explanation:
Given:
To prove:We have to prove
Explanation:
Step 1:
#SPJ2
Cos 2x cos 2y + cos^2 (x+y) - cos^2 (x-y) = cos(2x+2y)
https://brainly.in/question/8775327
Prove that :- sin 2x - sin 2y/cos 2y - cos 2x = cot (x+y)
https://brainly.in/question/1018715