prove that cos36°=√5+1/4
Answers
Answered by
23
Hey !!!
•°• cos36° = cos2 × 18 °
°•° we know that cos2A = 1 - sin²A
similarly ,
=> 1 - 2 ( sin²18° )
but sin18° = (√5 - 1) /4
hence,
=> 1 - 2 {( √5 - 1 )/4 }²
=> 1 - 2 {( 5 + 1 - 2√5 ) /16 }
=> 16 - 2 ( 6 - 2√5 )
=> 16 - 12 + 4√5 / 16
=> 4 + 4√5 / 16
=> 4 ( 1 + √5 )/16
=> 1 + √5 /4
Hence, cos36° = √5 + 1 /4 Answer ✔
______________________________
Hope it helps you !!!
@Rajukumar111
•°• cos36° = cos2 × 18 °
°•° we know that cos2A = 1 - sin²A
similarly ,
=> 1 - 2 ( sin²18° )
but sin18° = (√5 - 1) /4
hence,
=> 1 - 2 {( √5 - 1 )/4 }²
=> 1 - 2 {( 5 + 1 - 2√5 ) /16 }
=> 16 - 2 ( 6 - 2√5 )
=> 16 - 12 + 4√5 / 16
=> 4 + 4√5 / 16
=> 4 ( 1 + √5 )/16
=> 1 + √5 /4
Hence, cos36° = √5 + 1 /4 Answer ✔
______________________________
Hope it helps you !!!
@Rajukumar111
Similar questions