prove that : cos3a-cos2a+cosa/sin3a - sin2a+sina= cot2a
Answers
Answered by
4
=Cos3A-Cos2A+CosA/Sin3A-Sin2A+SinA
=Cos3A+CosA-Cos2A/Sin3A+SinA-Sin2A
Let 3A=C and A=D
CosC+CosD=2×(cosA+B/2)×(cosA-B/2)
SinC+SinD=2×(sinA+B/2)×(CosA-B/2)
=(2×cos3A+A/2×cos3A-A/2)-Cos2A/2×(Sin3A+A/2)×(Cos3A-A/2)-Sin2A
=(2×cos4A/2×cos2A/2)-Cos2A/(2×Sin4A/2×cos2A/2)-Sin2A
=2×Cos2A×CosA-Cos2A/2×Sin2A×CosA-2Sin2A
Taking Cos2A common on numerator and Taking Sin2A common on denominator
=Cos2A(2CosA-1)/Sin2A(2CosA-1)
Dividing Cos2A-1
=Cos2A/Sin2A
=Cot2A[CosA/SinA=CotA]
Similar questions
English,
3 months ago
History,
3 months ago
Math,
7 months ago
Hindi,
1 year ago
Social Sciences,
1 year ago