Math, asked by dharmyaaagja, 1 year ago

Prove that cos570°sin510° + sin(-330°)cos(-390) = 0​

Answers

Answered by sprao53413
2

Answer:

Please see the attachment

Attachments:
Answered by IamIronMan0
1

Answer:

Formula used

 \cos( - x)  =  \cos(x)  \\  \sin( - x) =  -  \sin(x)   \\  \cos(450 + x)  =   - \sin(x)  \\  \cos(360 + x)  =    \cos(x)  \\ sin(360 - x) =  -  \sin(x)

Use Cartesian to remember signs.

 \cos(570)   \sin(510)   +  \sin( - 330)   \cos( - 390) \\  =  \cos(450 + 120)  \sin(450 + 60)   -  \sin(360 - 30)  \cos(360 + 30)  \\  =  \sin(120)  \sin(60)  - (  \sin(30) ) \cos(30) )  \\ =  \cos(60)  \sin(60)  -  \cos(30)  \sin(30)  \\  =  \sin(90 - 60)  \cos(90 - 60)  -  \sin(30)  \cos(30)  \\  =  \sin(30)  \cos(30)  -  \sin(30)  \cos(30)  \\  = 0

Attachments:
Similar questions