prove that cos75°+cos15°/sin75°-sin15°=√3
Answers
Answered by
1
Answer:
sin75=sin(30+45)=sin30cos45+sin45cos30
=1/2×1/√2+1/√2×√3/2
=1/2√2+√3/2√2
=(1+√3)/2√2
sin15=sin(45-30)=sin45cos30-sin30cos45
sin15=(√3-1)/2√2
similarly
cos75=(√3-1)/2√2
cos15=(√3+1)/2√2
sin75-sin15/cos75+cos15
=(1/2√2+√3/2√2-√3/2√2+1/2√2)÷(√3/2√2-1/2√2+√3/2√2+1/2√2)
=(-2/2√2)÷(2√3/2√2)
=(-1/√2)÷(√3/√2)
=-1/√3
Similar questions