prove that
cos9x-cos5x÷sin17x-sin3x=sin2x÷cos10x
Answers
Answered by
0
Answer:
. ।।।।।।।। ।।।।।।।।।।। ।। । । । ।
Answered by
12
Answer:
LHS = (cos9x - cos5x)/(sin17x-sin3x)
Use the formula,
cosC - cosD = 2sin(C + D)/2.sin(D-C)/2
sinC-sinD = 2cos(C+D)/2.sin(C-D)/2
= {2sin(9x+5x)/2.sin(5x-9x)/2}/{2cos(17x+3x)/2.sin(17x-3x)/2}
=-(sin7x.sin2x)/(cos10x.sin7x)
= - sin2x/cos10x = RHS
Step-by-step explanation:
Proved
Similar questions