prove that : cosA/1+sinA+ 1-sinA/cosA =2 cosec A
Answers
Answered by
0
Let us start with the LHS
LHS = 1 + cosA/sinA + sinA / 1+ cosA
here , LCM = sinA(1+ cosA)
= \frac{(1+cosA) ^{2} + (sinA) ^{2} }{sinA(1 + cosA)}
= \frac{ 1 + 2cosA + co s^{2}A + sin ^{2}A }{sinA(1 + cosA)}
We know that ,
sin²A + cos²A = 1
Hence,
= \frac{1 + 1 + 2 cosA}{sinA( 1 + cosA)}
\frac{2 + 2 cosA}{sinA(1+cosA)}
= \frac{2 ( 1 + cosA)}{sinA(1+ cosA)}
1 + cosA gets cancelled , ( in numerator and denominator).
= 2 / sinA
= 2* 1/sinA
We know that , 1/sinA = cosec A
Hence,
= 2*1/sinA = 2* cosecA = 2cosecA = RHS
PROVED.
Similar questions