Prove that cosA / 1-sinA = (1+ tanA/2) / (1- tanA/2)
Answers
Answer:
Step-by-step explanation:
Formula used:
(1.) cos[2(a/2)]
= cos^2(a/2) - sin^2(a/2)
= [cos(a/2) - sin(a/2)]*[cos(a/2) + sin(a/2)]
(2.) 1 - sin[2(a/2)]
= cos^2(a/2) + sin^2(a/2) - 2.sin(a/2).cos(a/2)
= [cos(a/2) - sin(a/2)]^2
= [cos(a/2) - sin(a/2)]*[cos(a/2) - sin(a/2)]
Now substituting 1. in numerator and 2. in denominator we get
{[cos(a/2) - sin(a/2)]*[cos(a/2) + sin(a/2)]}÷{[cos(a/2) - sin(a/2)]*[cos(a/2) +- sin(a/2)]}
= [cos(a/2) + sin(a/2)]÷[cos(a/2) - sin(a/2)]
= Dividing numerator and denominator by cos(a/2) we get
[1 + tan(a/2)]÷[1 - tan(a/2)]
Answer:
= cos^2(a/2) - sin^2(a/2)
cos^2(a/2) + sin^2(a/2) - 2.sin(a/2).cos(a/2)
= [cos(a/2) - sin(a/2)]*[cos(a/2) + sin(a/2)]
[cos(a/2) - sin(a/2)]^2
= [cos(a/2) - sin(a/2)]*[cos(a/2) + sin(a/2)]
[cos(a/2) - sin(a/2)]*[cos(a/2) - sin(a/2)]
={[cos(a/2) - sin(a/2)]*[cos(a/2) + sin(a/2)]}
{[cos(a/2) - sin(a/2)]*[cos(a/2) +- sin(a/2)]}
= [cos(a/2) + sin(a/2)]
[cos(a/2) - sin(a/2)]
= Dividing numerator and denominator by cos(a/2) we get
=[1 - tan(a/2)] = R.H.S. proved
[1 + tan(a/2)]
Step-by-step explanation: