Math, asked by XXMrAxeXX, 1 month ago

Prove that :-

cosA/1-tanA + sinA/1-cotA
= cosA + sinA​

Answers

Answered by udhwanirashmi
1

Answer:

Step-by-step explanation:

= cosA/1-tanA + sinA/1-cotA

= cosA/1-sinA/cosA + sinA/1-cosA/sinA

= cos2 A/cosA – sinA – sin2 A/cosA – sinA

= cos2 A - sin2 A/ cosA – sinA

= (cosA + sinA)( cosA – sinA)/ cosA – sinA

= sinA + cosA

Hence proved..

Hope it will help you..

Answered by TheAestheticBoy
35

Step-by-step explanation:

★ Question :-

⠀⠀⠀⠀⠀⠀⠀

⟶ Prove that :-

   \large \bold { \frac{cosA}{1 - tanA} +  \frac{sinA}{1 - cotA} = cosA + sinA  }

________________________________

Answer :-

⠀⠀⠀⠀⠀⠀⠀

⠀⠀\bold\red{L.H.S} \bold{ \:  = \frac{cosA}{1 - tanA } +  \frac{sinA}{1 - cotA}  }  \\  \\  \bold{ =  \frac{cosA}{1 -  \frac{sinA}{cosA} }  +  \frac{sinA}{1 -  \frac{cosA}{sinA} } } \\  \\  \bold{ =  \frac{cosA}{ \frac{cosA - sinA}{cosA} }  +  \frac{sinA}{ \frac{sinA - cosA}{sinA} } } \\  \\   \bold{=  \frac{cos {}^{2}A }{cosA - sinA} +  \frac{sin {}^{2} A}{sinA - cosA}  } \\  \\  \bold{ =  \frac{cos {}^{2} A}{cosA - sinA}  -  \frac{sin {}^{2}A }{cosA - sinA} } \\  \\  \bold{ =  \frac{cos {}^{2}A - sin {}^{2}  A}{cosA - sinA} } \\  \\  \bold{ =  \frac{(cosA - sinA)(cosA + sinA)}{cosA - sinA} } \\  \\  \fbox \pink{ = cosA + sinA} \bold \red{  \:  \:  \:  \:  \:  \:  \: =R.H.S }

________________________________

\green{ \fcolorbox{gray}{black} {\textbf{ Hence, Proved ✔ }}}

________________________________

\large\colorbox{pink}{Hope lt'z Help You ❥ }

Similar questions