prove that cosA/1-tanA+sinA/1-cotA=sinA+cosA
Answers
Answered by
1
Step-by-step explanation:
__________________________
LHS .
cosa / 1-tana + sina / 1-cot a
(tana = sina/ cosa, cot a = cosa/sina)
cosa/1-(sina/cosa) + sina /1- (cosa/sina)
Taking LCM
cosa/ (cosa - sina)/cosa + {sina / (sina - cosa)/ sina}
cos^2a/ cosa-sina + sin^2a / sina - cosa
Taking - ve common.
cos^2a / cosa - sina - sin^2a / cosa - sina
Taking LCM.
cos^2a - sin^2a/ cosa - sina
{ a^2- b^2 =( a+b)( a-b)}
Applying the identity.
(cosa+ sina )(cosa - sina)/ cosa-sina
cosa + sina = LHS
LHS = RHS .
HENCE PROVED.
Hope it may help you ♥
Similar questions