prove that:- (cosA+cosB)^2+(sinA+sinB)^2=4cos^2A-B/2
Answers
Answered by
2
=> (cos^2A + cos^2B + 2cosAcosB) + (sin^2A + sin^2B - 2sinAsinB)
=> cos^2A + cos^2B + sin^2A + sin^2B + 2cosAcosB - 2sinAsinB
=> cos^2A + sin^2A + cos^2B + sin^2B + 2(cosA*cosB - sinA*sinB)
=> 1 + 1 + 2(cosA*cosB - sinA*sinB)
=> 2 + 2(cosA*cosB - sinA*sinB)
=> 2 (1 + (cosA*cosB + sinA*sinB))
=> 2 * (1 + cos(A-B))
{Because: cosA*cosB - sinA*sinB = cos(A+B)}
=> 2 * 2cos^2 ((A+B)/2)
=> 4cos^2 (A+B)/2
=> cos^2A + cos^2B + sin^2A + sin^2B + 2cosAcosB - 2sinAsinB
=> cos^2A + sin^2A + cos^2B + sin^2B + 2(cosA*cosB - sinA*sinB)
=> 1 + 1 + 2(cosA*cosB - sinA*sinB)
=> 2 + 2(cosA*cosB - sinA*sinB)
=> 2 (1 + (cosA*cosB + sinA*sinB))
=> 2 * (1 + cos(A-B))
{Because: cosA*cosB - sinA*sinB = cos(A+B)}
=> 2 * 2cos^2 ((A+B)/2)
=> 4cos^2 (A+B)/2
Answered by
2
The answer is explained in the attachment.
Hope it helps!
Hope it helps!
Attachments:
siddhartharao77:
:-)
Similar questions