Prove that cosA/cosec A+1+cosA/cosecA-1=2 tanA
Answers
Answered by
31
LHS
[cosA/(cosecA+1)] + [cosA/(cosec-1)]
Taking LCM
=[cosA(cosec-1) + cosA(cosecA+1)]/[(cosecA+1)(cosecA-1)
cosAcosecA = cosA /sinA = cotA
and, (cosecA+1)(cosecA-1)= cosec²A -1 = cot²A
now, substituting these values,
(cotA -cosA)+(cotA +cosA)/cot²A
=2cotA/cot²A
=2/cotA
=2tanA
RHS
[cosA/(cosecA+1)] + [cosA/(cosec-1)]
Taking LCM
=[cosA(cosec-1) + cosA(cosecA+1)]/[(cosecA+1)(cosecA-1)
cosAcosecA = cosA /sinA = cotA
and, (cosecA+1)(cosecA-1)= cosec²A -1 = cot²A
now, substituting these values,
(cotA -cosA)+(cotA +cosA)/cot²A
=2cotA/cot²A
=2/cotA
=2tanA
RHS
Similar questions
Social Sciences,
8 months ago
Math,
8 months ago
English,
8 months ago
Science,
1 year ago
English,
1 year ago