Math, asked by devarajn8663, 9 months ago

Prove that cosA/secA-tanA =1+sinA​

Answers

Answered by srijansarvshresth123
3

Answer:

 \frac{ \cos( \alpha ) }{ \sec( \alpha ) -   \tan( \alpha ) } \\  \frac{  { \cos( \alpha ) }^{2} }{1 -  \sin( \alpha ) }  \\ \frac{1 -  { \sin( \alpha ) }^{2} }{1 -  \sin( \alpha ) }    \\ 1 +  \sin( \alpha )

Hence proved...

Step-by-step explanation:

Mark my answer as brainliest

Answered by mysticd
9

 LHS = \frac{ cosA}{secA-tanA} \\=  \frac{ cosA(secA + tanA)}{(secA - tanA)(secA + tanA)}\\= \frac{ cosA(secA + tanA)}{sec^{2}A - tan^{2}A}\\= \frac{ cosA(secA + tanA)}{1}

 \boxed { \pink { sec^{2} A - tan^{2} A = 1 }}

 = cosA( secA + tanA) \\= cosA secA + cosA tanA \\= cosA \times \frac{1}{cosA} + cosA \times \frac{sinA}{cosA} \\= 1 + sinA \\= RHS

 Hence\: proved .

•••♪

Similar questions