Math, asked by radhikasharma1409, 4 months ago

Prove that (cosA - sinA + 1) / (cosA + sinA - 1) = (cosA +1) / sinA​

Answers

Answered by Anonymous
3

Solution:-

We have

 \rm \implies \dfrac{ \cos  A-  \sin  A + 1}{ \cos  A+ \sin  A  -  1}  =  \dfrac{ \cos A + 1}{ \sin  A }

Using cross multiplication methods

 \rm \implies \:  \sin A( \cos A - \sin A + 1) =  (\cos A + 1)( \cos A +  \sin A - 1)

 \rm \implies \:  \sin A \cos A -  \sin {}^{2}  A +  \sin A =  \cos {}^{2} A +  \sin A \cos A -  \cos A +  \cos A +  \sin A - 1

\rm \implies \:  \cancel{ \sin A \cos A} -  \sin {}^{2}  A +   \cancel{\sin A} =  \cos {}^{2} A +   \cancel{\sin A \cos A} -   \cancel{\cos A }+  \cancel{ \cos A} +   \cancel{\sin A} - 1

\rm \implies \:   -  \sin {}^{2}  A =  \cos {}^{2} A  - 1

 \rm \implies \:  \cos {}^{2}  A +  \sin {}^{2} A = 1

We know that

 \rm \implies \:  \cos {}^{2}  A +  \sin {}^{2} A = 1

We get

 \rm \implies \: 1 = 1

Hence proved

Some more trigonometry identities

\rm \implies \:  \cos {}^{2}  A +  \sin {}^{2} A = 1

 \rm \implies \:  \tan  \theta =  \dfrac{ \sin \theta }{ \cos\theta}

 \rm \implies \cot  \theta =  \dfrac{ \cos \theta }{ \sin \theta }

 \rm \implies \:  \sec \theta  =  \dfrac{1}{ \cos \theta }

 \implies \csc \theta =  \dfrac{1}{ \sin\theta}

Similar questions