Math, asked by joyahamed3857, 1 month ago

Prove that cosA+sinA/cosA-sinA -cosA-sinA/cosA+sinA=2tanA

Answers

Answered by senboni123456
1

Answer:

Step-by-step explanation:

We have,

\tt{\dfrac{cos(A)+sin(A)}{cos(A)-sin(A)}-\dfrac{cos(A)-sin(A)}{cos(A)+sin(A)}}

\sf{=\dfrac{(cos(A)+sin(A))^2-(cos(A)-sin(A))^2}{(cos(A)-sin(A))(cos(A)+sin(A))}}

\sf{=\dfrac{4\,cos(A)\,sin(A)}{cos^2(A)-sin^2(A)}}

\sf{=\dfrac{2\cdot2\,sin(A)\,cos(A)}{cos^2(A)-sin^2(A)}}

\sf{=\dfrac{2\,sin(2A)}{cos(2A)}}

\sf{=2\,tan(2A)}}

Answered by jannu235
0

Answer:

hope it will be helpful for you

Attachments:
Similar questions