Math, asked by apoorva70, 1 year ago

. Prove that (cosec A-cot A)^2=
(1-сos A)/
(1 + cos A)

Answers

Answered by premmishra35
2

Hey friend,

Here is the solution :-

( \csc(a)  -  \cot(a) )^{2}  =  \frac{1 -  \cos(a) }{1 +  \cot(a) }  \\  \\   \csc(a)  -  \cot(a)  =  \sqrt{ \frac{1 -  \cos(a) }{1 +  \cos(a) } }  \\  \\ r.h.s. =  \sqrt{ \frac{1 -  \cos(a) }{1 \cos(a)}  \times  \frac{1 -  \cos(a) }{1 -  \cos(a) } }  \:  \:  \:  \: (by \: rationalizing) \\  \\  =  >  \sqrt{ \frac{(1 -  \cos(a)) \: (1 -  \cos(a))  }{(1 +  \cos(a)) \: (1 -  \cos(a))  } }  \\  \\  =  >  \sqrt{ \frac{(1 -  \cos(a))^{2}  }{ ({1})^{2}  -( \cos(a))^{2}   } }  \\  \\  =  >  \sqrt{ \frac{(1 -  \cos(a)) ^{2} }{1 -  \cos^{2}a  }   }  \\  \\  =  >  \frac{1 -  \cos(a) }{1 -  \cos^{2} a }  \\  \\  \frac{1 -  \cos(a) }{ \sin(a) }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (1 -  \cos(a)  =  \sin(a) ) \\  \\  =  >  \frac{1}{ \sin(a) }  -  \frac{ \cos(a) }{ \sin(a) }  \\  \\  =  >  \csc(a)  -  \cot(a)  \:  \:  \:  \:  \: (hence \: l.h.s. = r.h.s.)

✨I hope this will help you....✨

Similar questions