prove that
(cosec A-cot A)2 +1
sec A (cosec A-cot A)
= 2 cot A
2
Answers
Answered by
0
Step-by-step explanation:
SOLUTION :- Taking LHS, [(cosecA - cotA)² +1/(secA(cosecA - cotA) Putting 1 = cosec²A - cot A in Numerator, {(cosecA - cotA)? +(cosec?A - cot?A)}/ (secA(cosecA - cotA) - b? = (a + b)(a - b) Now, %3D + {(cosecA - cotA)² +(cosecA - cotA)(cosecA + cotA)}/(secA(cosecA - cotA) Taking (coseCA - cotA) common from Numerator, (cosecA - cotA){(cosecA - cotA) + (cosecA + cotA)} / secA(cosecA - cotA)
Similar questions