Math, asked by ThomasBrainliestUser, 1 month ago

Prove that: (cosec θ + cot θ)² = 1- cos θ÷1+cos θ​

Answers

Answered by Salmonpanna2022
3

Step-by-step explanation:

\mathsf{Given :\;(cosec\theta + cot\theta)^2}

\textsf{We know that : \boxed{\mathsf{cosec\theta = \dfrac{1}{sin\theta}}}}

\textsf{We know that : \boxed{\mathsf{cot\theta = \dfrac{cos\theta}{sin\theta}}}}

\implies \mathsf{\bigg(\dfrac{1}{sin\theta} + \dfrac{cos\theta}{sin\theta}\bigg)^2}

\implies \mathsf{\bigg(\dfrac{1 + cos\theta}{sin\theta}\bigg)^2}

\implies \mathsf{\dfrac{(1 + cos\theta)^2}{sin^2\theta}}

\textsf{We know that : \boxed{\mathsf{sin^2\theta = 1 - cos^2\theta}}}

\implies \mathsf{\dfrac{(1 + cos\theta)^2}{1 - cos^2\theta}}

\textsf{We know that : \boxed{\mathsf{a^2 - b^2 = (a + b)(a - b)}}}

\implies \mathsf{1 - cos^2\theta = (1 + cos\theta)(1 - cos\theta)}

\implies \mathsf{\dfrac{(1 + cos\theta)^2}{(1 - cos\theta)(1 + cos\theta)}}

\implies \mathsf{\dfrac{1 + cos\theta}{1 - cos\theta}}

Similar questions