Prove that: (cosecθ - sin θ) ( sec θ - cosθ) (tan θ+ cot θ) =1
(Class 10 Maths Sample Question Paper)
Answers
Answered by
2
SOLUTION;
LHS=
(cosecθ - sin θ) ( sec θ - cosθ)(tan θ+ cot θ)
= (1/sinθ - sinθ) (1/cosθ - cosθ)(sinθ/cosθ+cosθ/sinθ)
= (( 1- sin²θ)/sinθ) ((1- cos²θ)/cosθ) ((sin²θ+cos²θ)/sinθ.cosθ)
=( Cos²θ/sinθ)(sin²θ/Cosθ) (1/sinθ.cosθ)
[ 1- sin²θ = cos²θ, 1- cos²θ= sin²θ, sin²θ+cos²θ= 1]
= (cosθ . sinθ) / ( sinθ.cosθ)
= 1
= RHS
HOPE THIS WILL HELP YOU....
LHS=
(cosecθ - sin θ) ( sec θ - cosθ)(tan θ+ cot θ)
= (1/sinθ - sinθ) (1/cosθ - cosθ)(sinθ/cosθ+cosθ/sinθ)
= (( 1- sin²θ)/sinθ) ((1- cos²θ)/cosθ) ((sin²θ+cos²θ)/sinθ.cosθ)
=( Cos²θ/sinθ)(sin²θ/Cosθ) (1/sinθ.cosθ)
[ 1- sin²θ = cos²θ, 1- cos²θ= sin²θ, sin²θ+cos²θ= 1]
= (cosθ . sinθ) / ( sinθ.cosθ)
= 1
= RHS
HOPE THIS WILL HELP YOU....
Answered by
1
Hi friend,
We need to prove that
(cosecθ - sin θ) ( sec θ - cosθ) (tan θ+ cot θ) =1
(cosecθ - sin θ) ( sec θ - cosθ)(tan θ+ cot θ)
= (1/sinθ - sinθ) (1/cosθ - cosθ)(sinθ/cosθ+cosθ/sinθ)
= (( 1- sin²θ)/sinθ).
((1- cos²θ)/cosθ).
((sin²θ+cos²θ)/sinθ.cosθ)
=( Cos²θ/sinθ)(sin²θ/Cosθ) (1/sinθ.cosθ)
[ 1- sin²θ = cos²θ, 1- cos²θ= sin²θ, sin²θ+cos²θ= 1]
= (cosθ . sinθ) / ( sinθ.cosθ)
= 1.
Hope this helped you a little!!!
We need to prove that
(cosecθ - sin θ) ( sec θ - cosθ) (tan θ+ cot θ) =1
(cosecθ - sin θ) ( sec θ - cosθ)(tan θ+ cot θ)
= (1/sinθ - sinθ) (1/cosθ - cosθ)(sinθ/cosθ+cosθ/sinθ)
= (( 1- sin²θ)/sinθ).
((1- cos²θ)/cosθ).
((sin²θ+cos²θ)/sinθ.cosθ)
=( Cos²θ/sinθ)(sin²θ/Cosθ) (1/sinθ.cosθ)
[ 1- sin²θ = cos²θ, 1- cos²θ= sin²θ, sin²θ+cos²θ= 1]
= (cosθ . sinθ) / ( sinθ.cosθ)
= 1.
Hope this helped you a little!!!
Similar questions