Math, asked by goyalsuhani32, 1 year ago

Prove that (cosec theta - cot theta)^ 2 =
1- cos theta / 1+ cos theta ..

Answers

Answered by RAMVILASH
3
first write L.H.S and then solve it
Attachments:

goyalsuhani32: Thank u
RAMVILASH: welcome bro
Answered by BrainlyConqueror0901
68

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \orange{to \: prove}} \\  {\pink{ \boxed{ \red{(cosec \theta - cot  \theta)^{2}  =  \frac{1 - cos \theta}{1 + cos \theta}  }}}}

Use some trigonometric identites to proof:

 \to(cosec \theta - cot  \theta)^{2}  =  \frac{1 - cos \theta}{1 + cos \theta} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  </strong><strong>L</strong><strong>H</strong><strong>S</strong><strong> \\  \to(cosec \theta - cot  \theta)^{2}   \\  \to ( \frac{1}{sin \theta}  -  \frac{cos  \theta}{sin \theta} ) ^{2}  \\  \to( \frac{1 - cos \theta}{sin \theta} )^{2}  \\  \to \frac{(1 - cos \theta) ^{2} }{sin^{2} \theta }  \\   \to  \frac{(1 - cos \theta)^{2} }{ {1}^{2} - cos^{2}  \theta  }  \\  \to \frac{(1 - cos \theta)(1 - cos \theta)}{(1 + cos \theta)(1 - cos \theta)}  \\  \to \frac{1 - cos \theta}{1 + cos \theta}

\huge{\pink{\boxed{\green{\underline{\sf{RHS\:PROVED-}}}}}}

_________________________________________

Similar questions