Math, asked by kirat307, 10 months ago

Prove that cosec theta/Cot theta+tan theta=cos theta​

Answers

Answered by saounksh
31

Step-by-step explanation:

 \frac{ \csc( \alpha ) }{ \cot( \alpha ) +  \tan( \alpha )  }

 =  \frac{ \frac{1}{ \sin( \alpha ) } }{ \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  +  \frac{ \sin( \alpha ) }{ \cos( \alpha ) } }

 =  \frac{ \frac{1}{ \sin( \alpha ) }  \times  \sin( \alpha )  \cos( \alpha ) }{( \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  +  \frac{ \sin( \alpha ) }{ \cos( \alpha ) } ) \times  \sin( \alpha )  \cos( \alpha ) }

 =   \frac{ \cos( \alpha ) }{ \cos {}^{2} ( \alpha )  +  \sin {}^{2}  ( \alpha ) }

 =  \frac{ \cos( \alpha ) }{1}

 =  \cos( \alpha )

Hence Proved

Answered by samhita41
10

Step-by-step explanation:

L.H.S. = cosecθ

cotθ+tanθ

1

sinθ

= cosθ+sinθ

sinθ +cosθ

1

sinθ

= sin²θ+cos²θ

sinθ.cosθ

1

sinθ

= 1

sinθ.cosθ

= 1 × sinθ.cosθ

sinθ 1

= cosθ

Similar questions