prove that,,
[cosecA+cotA-1] / [cotA-cosecA+1] = (1+cosA) /sinA
Answers
Answered by
7
Sol:
(Cot A + Cosec A - 1) / (Cot A - Cosec A + 1)
= (Cot A + Cosec A) - (Cosec2 A - Cot2 A) / (Cot A - Cosec A + 1)
= (Cot A + Cosec A) [1 - Cosec A + Cot A) / (Cot A - Cosec A + 1)]
= (Cot A + Cosec A)
= (Cos A/Sin A + 1/Sin A)
= (1 + Cos A) / Sin A
Hence proved.
(Cot A + Cosec A - 1) / (Cot A - Cosec A + 1)
= (Cot A + Cosec A) - (Cosec2 A - Cot2 A) / (Cot A - Cosec A + 1)
= (Cot A + Cosec A) [1 - Cosec A + Cot A) / (Cot A - Cosec A + 1)]
= (Cot A + Cosec A)
= (Cos A/Sin A + 1/Sin A)
= (1 + Cos A) / Sin A
Hence proved.
manishgene1111p8u1j7:
thanks a lot for million times
Answered by
0
(cosecA+cotA-1)/(cotA-cosecA+1)
={(cosecA+cotA)-(cosec²A-cot²A)}/(cotA-cosecA+1)
=(cosecA+cotA)(1-cosecA+cotA)/(cotA-cosecA+1)
=cosecA+cotA
=1+cosA/sinA
Similar questions