Math, asked by malemidinavaj168, 5 months ago

prove that cosecA-sinA secA-cosA =1/tanA+cotA

Answers

Answered by Anonymous
21

Question :

\bf{(cosecA - sinA)(secA - cosA) = \dfrac{1}{tanA + cotA}}

Solution :

Here ,

  • LHS = \bf{(cosecA - sinA)(secA - cosA)}

  • RHS = \bf{\dfrac{1}{tanA + cotA}}

By solving the RHS , we get :

:\implies \bf{\dfrac{1}{tanA + cotA}} \\ \\ \\

We know that :-

  • \bf{tan\theta = \dfrac{sin\theta}{cos\theta}}

  • \bf{cot\theta = \dfrac{cos\theta}{sin\theta}}

By Substituting the values in tanA and cotA , we get :

:\implies \bf{\dfrac{1}{\dfrac{sinA}{cosA} + \dfrac{cosA}{sinA}}} \\ \\ \\

:\implies \bf{\dfrac{1}{\dfrac{sin^{2}A + cos^{2}A}{cosAsinA}}} \\ \\ \\

:\implies \bf{\dfrac{1}{sin^{2}A + cos^{2}A} \times cosAsinA} \\ \\ \\

:\implies \bf{\dfrac{cosAsinA}{sin^{2}A + cos^{2}A}} \\ \\ \\

We know that :-

\bf{sin^{2}A + cos^{2}A = 1}

By Substituting the values in it, we get :

:\implies \bf{\dfrac{cosAsinA}{1}} \\ \\ \\

:\implies \bf{cosAsinA} \\ \\ \\

\boxed{\therefore \bf{RHS = cosAsinA}} \\ \\ \\

Hence RHS is cosAsinA.

By solving the LHS, we get :

:\implies \bf{(cosecA - sinA)(secA - cosA)} \\ \\ \\

We know that :-

  • \bf{cosec\theta = \dfrac{1}{sin\theta}}

  • \bf{sec\theta = \dfrac{1}{cos\theta}}

By Substituting the value of cosecA and secA , we get :

:\implies \bf{\bigg(\dfrac{1}{sinA} - sinA\bigg)\bigg(\dfrac{1}{cosA} - cosA\bigg)} \\ \\ \\

:\implies \bf{\bigg(\dfrac{1 - sin^{2}A}{sinA}\bigg)\bigg(\dfrac{1 - cos^{2}A}{cosA}\bigg)} \\ \\ \\

We know that ;

  • \bf{cos^{2}A = 1 - sin^{2}A}

  • \bf{sin{2}A = 1 - cos^{2}A}

By Substituting them in the equation , we get :

:\implies \bf{\dfrac{cos^{2}A}{sinA} \times \dfrac{sin^{2}A}{cosA}} \\ \\ \\

:\implies \bf{\dfrac{cos^{2}A}{cosA} \times \dfrac{sin^{2}A}{sinA}} \\ \\ \\

:\implies \bf{cosAsinA} \\ \\ \\

\boxed{\therefore \bf{RHS = cosAsinA}} \\ \\ \\

Hence LHS is cosAsinA.

By putting the LHS and RHS together , we get :

:\implies \bf{LHS = RHS} \\ \\ \\

:\implies \bf{cosAsinA = cosAsinA} \\ \\ \\

\boxed{\therefore \bf{(cosecA - sinA)(secA - cosA) = \dfrac{1}{tanA + cotA}}}

Hence we get that LHS = RHS.

Proved !!

Answered by Anonymous
60

Step-by-step explanation:

 \pink{ \huge \mathfrak {Solution}}

L.H.S

 \sf \bigg(cosesA - sinA \bigg) \bigg(secA - cosA \bigg) \\  \\  \\  \sf  \implies\bigg( \frac{1}{sinA}  - sinA \bigg) \bigg( \frac{1}{cosA}  - cosA \bigg) \\  \\  \\  \sf \implies \bigg( \frac{1 -  {sin}^{2}A }{sinA}  \bigg) \bigg( \frac{1 -  {cos}^{2}A }{cosA} \bigg) =  \frac{ {cos}^{ \cancel2} A \:  \:  {sin}^{ \cancel2}A} { \cancel{sinA \:  \: cosA} } \\  \\  \\  \sf \:  \frac{1}{tanA + cotA}  =R.H.S \\  \\  \\  \sf \: L.H.S  = R.H.S

Similar questions