Math, asked by chitab7akirthanans, 1 year ago

Prove that (cosecA-sinA) (secA-cosA) = 1/tanA+cotA

Answers

Answered by RSS02
332
this is the answer.if u like it mark it as brainliest answer.
Attachments:
Answered by hotelcalifornia
265

Answer:

{ ( \csc A - \sin A ) ( \sec A - \cos A ) }= \frac{1}{\tan A + \cot A}\\

Hence proved.

Solution:

\begin{array} { c } { ( \csc A - \sin A ) ( \sec A - \cos A ) } \\\\ { = \left( \frac { 1 } { \sin A } - \sin A \right) \left( \frac { 1 } { \cos A } - \cos A \right) } \\\\ { \quad = \frac { 1 - \sin ^ { 2 } A } { \sin A } \left( \frac { 1 - \cos ^ { 2 } A } { \cos A } \right) } \\\\ { = \frac { \cos ^ { 2 } A } { \sin A } \left( \frac { \sin ^ { 2 } A } { \cos A } \right) } \\\\ { = \cos A \times \sin A } \end{array}

\begin{aligned} & = \frac { \cos A \times \sin A } { 1 } \\\\ & = \frac { \cos A \times \sin A } { \cos ^ { 2 } A + \sin ^ { 2 } A } \end{aligned}

= \frac { 1 } { \frac { \cos ^ { 2 } A + \sin ^ { 2 } A } { \cos A \times \sin A } }

= \frac { 1 } { \left( \frac { \cos ^ { 2 } A } { \cos A \sin A } \right) + \left( \frac { \sin ^ { 2 } A } { \cos A \sin A } \right) }

= \frac { 1 } { \left( \frac { \cos A } { \sin A } \right) + \left( \frac { \sin A } { \cos A } \right) }

= \frac{1}{\tan A + \cot A} \\

Hence

{ ( \csc A - \sin A ) ( \sec A - \cos A ) }= \frac{1}{\tan A + \cot A}\\

Hence proved

Similar questions