Math, asked by AG1, 1 year ago

prove that:

(cosecA-sinA)(secA-cosA)*sec²A=tanA

Answers

Answered by TheLifeRacer
14
CosecA-sinA=1-sin^2A/sinA.

and, secA-cosA=1-cos^2A/cosA

now, putting on ur question.from lhs.

1-sin^2A/sinA*1-cos^2A/cosA*sec^2A

=) where ,,1 -sin^2=cos^2A.
and ,1-cos^2A=sin^2A.

so, cos^2A/sinA*sin^2A/cosA*sec^2A

=)cos^2A/sinA*Sin^2A/cosA*1/cos^2A 【cos^2Acancelled】

=)remaining,
sin^2A/sinA*cosA

=)sinA/cosA

=)tanA Rhs,

prooved ...

hope it help you..

@rajukumar☺☺1

Answered by kmanjunathxx
0

Step-by-step explanation:

(1/sinA-sinA) (1/cosA-cosA) sec²A

(1-sin²A/sinA) (1-cos²A/cosA) sec²A

(cos²A/sinA) (sin²A/cosA) sec²A

sinA/cosA=tanA=RHS

Similar questions