Math, asked by karishma4559, 1 year ago

Prove that (cosectheta-sintheta)(sectheta-cos theta)=1/tantheta+cottheta

Answers

Answered by 0Prabh11
5
your answer is explained above
Attachments:
Answered by pinquancaro
0

Answer and explanation:

To prove : (csc\theta-\sin\theta)(\sec\theta-\cos\theta)=\frac{1}{\tan\theta+\cot\theta}

Proof :

Taking LHS,

LHS=(csc\theta-\sin\theta)(\sec\theta-\cos\theta)

LHS=(\frac{1}{\sin\theta}-\sin\theta)(\frac{1}{\cos\theta}-\cos\theta)

LHS=(\frac{1-\sin^2\theta}{\sin\theta})(\frac{1-\cos^2\theta}{\cos\theta})

LHS=(\frac{\cos^2\theta}{\sin\theta})(\frac{\sin^2\theta}{\cos\theta})

LHS=\sin\theta\cos\theta

Multiply and divide by \cos\theta

LHS=\tan\theta\cos^2\theta

LHS=\frac{\tan\theta}{\sec^2\theta}

LHS=\frac{\tan\theta}{1+\tan^2\theta}

LHS=\frac{1}{\frac{1}{\tan\theta}+\frac{\tan^2\theta}{\tan\theta}}

LHS=\frac{1}{\cot\theta+\tan\theta}

LHS=RHS

Hence proved.

Similar questions