Math, asked by entrepreneur, 1 year ago

prove that cosu÷1+sinu=1-sinu÷cosu

Answers

Answered by faizaankhanpatp3bt9p
5
multiplying RHS by (1- sinu)
RHS = cosu(1-sinu)/1+sinu(1-sinu)
         = cosu-sinu.cosu/1-sin²u 
         = cosu-sinu.cosu/cos²u

dividing equation by cos u 
 
=> 1-sinu/cosu
      = LHS 

hence proved

here is your answer hope it helped 

entrepreneur1: why multply rhs by..
faizaankhanpatp3bt9p: to get 1-sin^2 u which is then known as cos^2 u
Answered by parmesanchilliwack
1

Answer:

We have to prove :

\frac{cos u}{1+sin u}=\frac{1-sin u}{cos u}

L.H.S.

\frac{cos u}{1+sin u}

By multiplying '1-sin u' on both numerator and denominator,

\frac{cos u(1-sin u)}{(1+sinu)(1-sinu)}

\frac{cos u(1-sin u)}{1-sin^2u}  ( Since, (a+b)(a-b) = a² - b² )

\frac{cos u(1-sin u)}{cos^2u}    ( sin² A + cos² A = 1 ⇒ cos² A = 1-sin²A )

\frac{(1-sin u)}{cosu}

= R.H.S.

Hence, proved....

Similar questions