prove that :cosx cos2x cos4x cos8x=sin 16x/16sinx
Answers
Answered by
154
cosxcos2scos4xcos8x
=1/2sinx[(2sinxcosx)cos2xcos4xcos8x]
=1/2sinx(sin2xcos2xcos4xcos8x)
=1/4sinx[(2sin2xcos2x)cos4xcos8x]
=1/4sinx(sin4xcos4xcos8x)
=1/8sinx[(2sin4xcos4x)cos8x]
=1/8sinx(sin8xcos8x)
=1/16sinx(2sin8xcos8x)
=1/16sinx(sin16x)
=sin16x/16sinx (Proved)
=1/2sinx[(2sinxcosx)cos2xcos4xcos8x]
=1/2sinx(sin2xcos2xcos4xcos8x)
=1/4sinx[(2sin2xcos2x)cos4xcos8x]
=1/4sinx(sin4xcos4xcos8x)
=1/8sinx[(2sin4xcos4x)cos8x]
=1/8sinx(sin8xcos8x)
=1/16sinx(2sin8xcos8x)
=1/16sinx(sin16x)
=sin16x/16sinx (Proved)
Answered by
26
cosxcos2scos4xcos8x
We,will multiple it by 1/2&2 to use C+D identity:
=1/2sinx[(2sinxcosx)cos2xcos4xcos8x]
=1/2sinx(sin2xcos2xcos4xcos8x)
=1/4sinx[(2sin2xcos2x)cos4xcos8x]
=1/4sinx(sin4xcos4xcos8x)
=1/8sinx[(2sin4xcos4x)cos8x]
=1/8sinx(sin8xcos8x)
=1/16sinx(2sin8xcos8x)
=1/16sinx(sin16x)
=sin16x/16sinx
Similar questions