prove that :cot 15/2 degrees = square root of 2 + root of 3 + root of 4 + root of 6
Answers
Answered by
184
cot 7.5 degree = sqrt 6 + sqrt 3 + sqrt 2 +2
cot(7.5) = cot{(45-30)/2} = (cos45 + cos30)/(sin45-sin30)
= ( 1/sqrt(2) - sqrt(3)/2 )/( 1/sqrt(2) - 1/2) = ( 2 - sqrt(6) ) / ( 2 - sqrt(2) )
= sqrt(6) + sqrt(3) + sqrt(2) + 2
cot(7.5) = cot{(45-30)/2} = (cos45 + cos30)/(sin45-sin30)
= ( 1/sqrt(2) - sqrt(3)/2 )/( 1/sqrt(2) - 1/2) = ( 2 - sqrt(6) ) / ( 2 - sqrt(2) )
= sqrt(6) + sqrt(3) + sqrt(2) + 2
Answered by
55
cot 2Ф = (cot² Ф - 1 )/ 2 cot Ф
let Ф = 15 deg Cot 2 * 15 = cot 30 = √3
2√3 cot Ф = cot² Ф -1 => cot 15 = 2 + √3
Apply the above rule for cot 2Ф again with 2Ф = 15 deg
let Ф = 15 deg Cot 2 * 15 = cot 30 = √3
2√3 cot Ф = cot² Ф -1 => cot 15 = 2 + √3
Apply the above rule for cot 2Ф again with 2Ф = 15 deg
Similar questions
Math,
8 months ago
Social Sciences,
8 months ago
Math,
8 months ago
Biology,
1 year ago
History,
1 year ago