Math, asked by ᴵᵗᶻᴰᵉᵃʳᶜᵒᵐʳᵃᵈᵉ, 2 days ago

Prove that cot (π/4 – 2 cot-1 3) = 7​

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\tt{cot\left(\dfrac{\pi}{4}-2\,cot^{-1}(3)\right)}

\tt{=\dfrac{cot\left(2\,cot^{-1}(3)\right)\cdot\,cot\left(\dfrac{\pi}{4}\right)+1}{cot\left(2\,cot^{-1}(3)\right)-cot\left(\dfrac{\pi}{4}\right)}}

\tt{=\dfrac{cot\left\{2\,tan^{-1}\left(\dfrac{1}{3}\right)\right\}\cdot\,1+1}{cot\left\{2\,tan^{-1}\left(\dfrac{1}{3}\right)\right\}-1}}

\tt{=\dfrac{cot\left\{tan^{-1}\left(\dfrac{\dfrac{2}{3}}{1-\dfrac{1}{9}}\right)\right\}+1}{cot\left\{tan^{-1}\left(\dfrac{\dfrac{2}{3}}{1-\dfrac{1}{9}}\right)\right\}-1}}

\tt{=\dfrac{cot\left\{tan^{-1}\left(\dfrac{2\times3}{9-1}\right)\right\}+1}{cot\left\{tan^{-1}\left(\dfrac{2\times3}{9-1}\right)\right\}-1}}

\tt{=\dfrac{cot\left\{tan^{-1}\left(\dfrac{6}{8}\right)\right\}+1}{cot\left\{tan^{-1}\left(\dfrac{6}{8}\right)\right\}-1}}

\tt{=\dfrac{cot\left\{tan^{-1}\left(\dfrac{3}{4}\right)\right\}+1}{cot\left\{tan^{-1}\left(\dfrac{3}{4}\right)\right\}-1}}

\tt{=\dfrac{cot\left\{cot^{-1}\left(\dfrac{4}{3}\right)\right\}+1}{cot\left\{cot^{-1}\left(\dfrac{4}{3}\right)\right\}-1}}

\tt{=\dfrac{\dfrac{4}{3}+1}{\dfrac{4}{3}-1}}

\tt{=\dfrac{4+3}{4-3}}

\tt{=\dfrac{7}{1}}

\tt{=7}

Answered by Manishadvp
1

Answer:

Hello dear.....

Kaha ho?

Similar questions